viernes, 30 de agosto de 2013

PRODUCTO ESCALAR DE DOS VECTORES

El producto escalar de dos vectores A y B es el producto de sus módulos por el coseno del angulo que esos vectores forman entre si.

  • El producto escalar de dos vectores es un escalar, y no un vector.
  • El producto escalar de dos vectores es igual que el producto escalar de uno de ellos por el vector de proyección ortogonal del otro sobre el.
  • El modulo de la proyección ortogonal de A sobre B es igual al producto escalar de A por B, dividido por el modulo de B, cuando la proyección A Y B tienen el mismo sentido
  • Si A y B son distintos de cero y AB es igual a cero, entonces los vectores A y B son perpendiculares.


PRODUCTO VECTORIAL DE DOS VECTORES
El producto vectorial de A y B se designa por AxB  y tiene las siguientes características:
  • El modulo del producto vectorial es igual al producto de los módulos de los dos vectores por el seno del angulo que forman.
  • La dirección de AxB es la de la recta perpendicular a los vectores A y B
  • El producto vectorial no es conmutativo




No hay comentarios:

Publicar un comentario